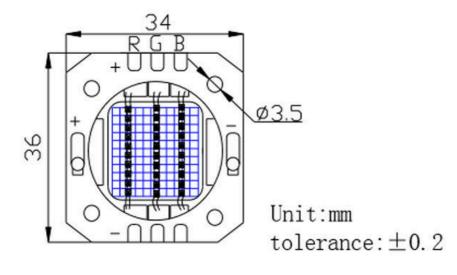
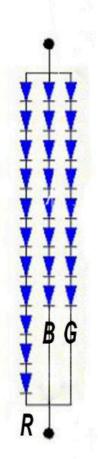


Spec No: DL-COB15WRGB-24V Rev No: V.4 Date: Jun/21/2013 Page: 1 OF 8 HONGKONG DOUBLE LIGHT ELECTRONICS TECHNOLOGY CO.,LIMITED

Features


- 1. Very long operating life (up to 100k hours).
- 2. Three chips (color) in one package.
- 3. Independent control of each color.
- 4. More energy efficient than incandescent and most halogen lamps.
- 5. Low voltage operated.
- 6. Instant light.
- 7. Long operating life.
- 8. IR reflow process compatible.
- 9. The product itself will remain within RoHS compliant Version


Applications

- 1. Commercial lighting
- 2. Advertisement
- 3. Architectural lighting
- 4. Street lamps

Spec No: DL-COB15WRGB-24V Rev No: V.4 Date: Jun/21/2013 Page: 2 OF 8 HONGKONG DOUBLE LIGHT ELECTRONICS TECHNOLOGY CO.,LIMITED

Dimensional drawing

Part No.	Chip Material		Lens Color	Source Color
DL-COB15WRGB-24V	R	AlGaInP		Hyper Red
	G	InGaN	Water Clear	Pure Green
	В	InGaN		Blue

Notes:

- 1. All dimensions are in millimeters.
- 2. Tolerance is ± 0.1mm unless otherwise noted.

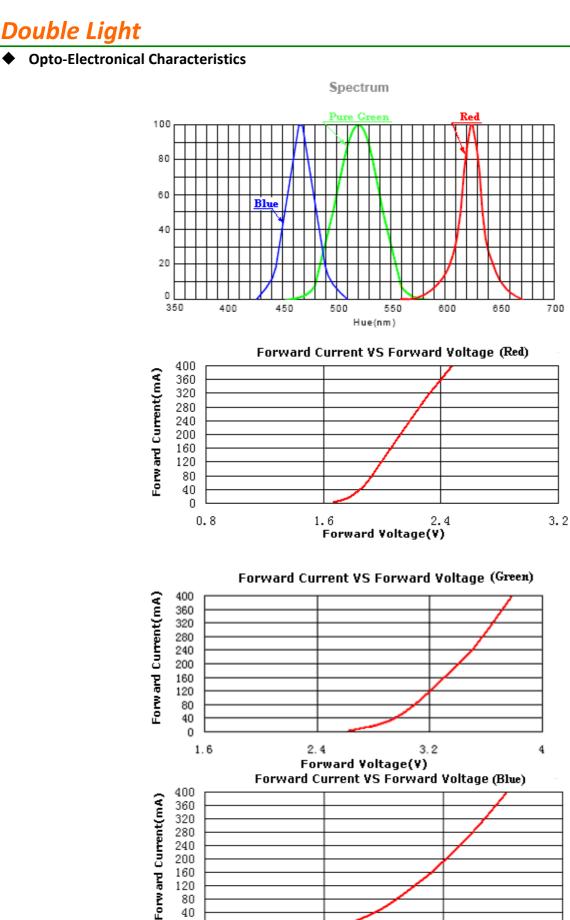
Spec No: DL-COB15WRGB-24V Rev No: V.4
HONGKONG DOUBLE LIGHT ELECTRONICS TECHNOLOGY CO.,LIMITED

Date: Jun/21/2013 Page: 3 OF 8

www.doublelight.com.cn

◆ Absolute maximum ratings (Ta=25°C)

Parameters	Symbol	Rating	Units
Power Dissipation	Pd	15	W
Forward Current	If	350	mA
Peak pulse Current	Ifp	500	mA
Reverse Voltage	Vr	5	V
Electrostatic Discharge	ESD	4500(HBM)	V
Operating Temperature	Topr	-40°C~+85°C	°C
Storage Temperature	Tstg	-40°C∼+100°C	°C
Soldering temperature	Tsol	260±5°C(for 5sec)	°C
Manual Soldering Temperature	T _{SOL}	350±20°C For 3 Seconds	°C

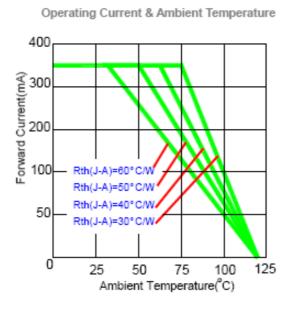

◆ Opto-Electronical Specification

Parameters	Symbol	Emitting Color	Min.	Тур.	Max.	Unit	Test Condition
		Hyper Red	300	380			15 252 4
Luminous Flux	Φ_{V}	Pure Green	400	500		lm	IF=350mA (Note 1)
		Blue	100	150			(11010 1)
		Hyper Red		120			
Viewing Angle	2θ _{1/2}	Pure Green		120		Deg	IF=350mA
		Blue		120			
		Hyper Red		632			
Peak Emission Wavelength	λр	Pure Green		520		nm	IF=350mA
		Blue		468			
	λd	Hyper Red		624		nm	IF=350mA
Dominant Wavelength		pure Green		525			
		Blue		470			
Spectral Line Half-Width	Δλ	Hyper Red		20		nm	IF=350mA
		Pure Green		35			
		Blue	-	25			
Forward Voltage	VF	Hyper Red		24		V	IF=350mA
		Pure Green		24			
		Blue		24			
		Hyper Red		-	10		
Reverse Current	IR	Pure Green			50	μΑ	V _R =5V
		Blue			50		

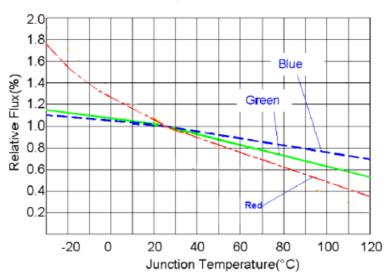
Notes:

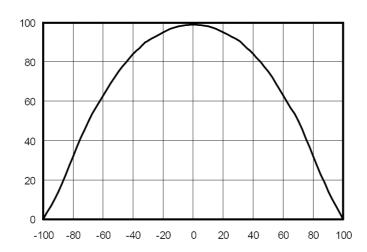
1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.

Spec No: DL-COB15WRGB-24V Rev No: V.4 Date: Jun/21/2013 Page: 4 OF 8
HONGKONG DOUBLE LIGHT ELECTRONICS TECHNOLOGY CO.,LIMITED www.doublelight.com.cn


2.4

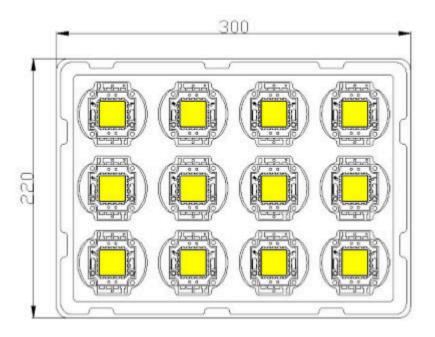
Forward Voltage(V)


4


3.2

1.6

Junction temperature & Relative Flux


♦ Reliability Test Items

No.	ltem	Condition	Time/Cycle	Number of Damaged
1	Soldering Heat Test	260±5°C	10 sec	0/20
2	Thermal Shock	-40°C(15sec)~100°C (15sec)	50 cycle	0/20
3	High Temp. Storage	High Temp. Storage 100°C 168Hrs		0/20
4	Low Temp. Storage	-40°C	168Hrs	0/20
5	Temperature Cycle Test	-40°C ~ 80°C	50Cycles, 200Hrs	0/20
6	High Temp. High Humidity Test	80°C, 80% RH	168Hrs	0/20
7	Life Test	25°C , 3000mA	168Hrs	0/20

Judgment Criteria

No.	ltem	Symbol	Test Conditions	Criteria
1	Leakage Current	Vf	If=3000mA	Δ%<10%
2	Forward Voltage	lr	Vr=5V	<10uA
3	Luminous Flux	lm	If=3000mA	Δ%<20 %

PackingStandard

Spec No: DL-COB15WRGB-24V Rev No: V.4 Date: Jun/21/2013 Page: 7 OF 8
HONGKONG DOUBLE LIGHT ELECTRONICS TECHNOLOGY CO.,LIMITED www.doublelight.com.cn

1. Storage conditions

a) Before opening the package:

The LEDs should be kept at 30°C or less and 70%RH or less. The LEDs should be used within a year. When storing the LEDs, moisture proof packaging with absorbent material (silica gel) is recommended.

b) After opening the package:

The LEDs should be kept at 30℃ or less and 60%RH or less. The LEDs should be soldered within 168 hours (7days) after opening the package.

If unused LEDs remain, they should be stored in moisture proof packages, such as sealed containers with packages of moisture absorbent material (silica gel).

2. Heat Generation

Thermal design of the end product is of paramount importance. Please consider the heat generation of the LED when making the system design. The coefficient of temperature increase per input electric power is affected by the thermal resistance of the circuit board and density of LED placement on the board as well as other components.

The operating current should be decided after considering the ambient maximum temperature of LEDs.

It is recommended that ethanol alcohol be used as a solvent for cleaning the LED 's. when using other solvents, it should be confirmed beforehand whether the solvents will dissolve the package and the resin or not. Freon solvents should not be used to clean the LEDs because of worldwide regulations.

4. Static Electricity

Static electricity or surge voltage damages the LEDs.

It is recommended that a wrist band or an anti-electrostatic glove be used when handling the LEDs. All devices, equipments and machineries must be properly grounded. It is recommended that measures be taken against surge voltage to the equipment that mounts the LED's . When inspecting the final products in which LEDs were assembled. It is recommended to check. Whether the assembled LEDs are damaged by static electricity or not. It is easy to find Static-damaged LED's by a light -on test or a VF test at a lower current (below 20 mA is recommended). Damaged LEDs will show some unusual characteristics such as the leak current. Remarkably increases, the forward voltage becomes lower, or the LEDs do not light at the low Current.

Spec No: DL-COB15WRGB-24V Rev No: V.4 Date: Jun/21/2013 Page: 8 OF 8 www.doublelight.com.cn